By Topic

The SIMCA algorithm for processing ground penetrating radar data and its use in landmine detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anand Sengodan ; Comput. Vision & Graphics Group, Univ. of Glasgow, Glasgow, UK ; W. Paul Cockshott

The main challenge of ground penetrating radar (GPR) based land mine detection is to have an accurate image analysis method that is capable of reducing false alarms. However an accurate image relies on having sufficient spatial resolution in the received signal. But because the diameter of an AP mine can be as low as 2cm and many soils have very high attenuations at frequencies above 3GHz, the accurate detection of landmines is accomplished using advanced algorithms. Using image reconstruction and by carrying out the system level analysis of the issues involved with recognition of landmines allows the landmine detection problem to be solved. The SIMCA ('SIMulated Correlation Algorithm') is a novel and accurate landmine detection tool that carries out correlation between a simulated GPR trace and a clutter1 removed original GPR trace. This correlation is performed using the MATLAB® processing environment. The authors tried using convolution and correlation. But in this paper the correlated results are presented because they produced better results. Validation of the results from the algorithm was done by an expert GPR user and 4 other general users who predict the location of landmines. These predicted results are compared with the ground truth data.

Published in:

Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on

Date of Conference:

2-5 July 2012