Cart (Loading....) | Create Account
Close category search window

An Efficient Approach to Integrating Radius Information into Multiple Kernel Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xinwang Liu ; Sch. of Comput., Nat. Univ. of Defense Technol., Changsha, China ; Lei Wang ; Jianping Yin ; En Zhu
more authors

Integrating radius information has been demonstrated by recent work on multiple kernel learning (MKL) as a promising way to improve kernel learning performance. Directly integrating the radius of the minimum enclosing ball (MEB) into MKL as it is, however, not only incurs significant computational overhead but also possibly adversely affects the kernel learning performance due to the notorious sensitivity of this radius to outliers. Inspired by the relationship between the radius of the MEB and the trace of total data scattering matrix, this paper proposes to incorporate the latter into MKL to improve the situation. In particular, in order to well justify the incorporation of radius information, we strictly comply with the radius-margin bound of support vector machines (SVMs) and thus focus on the l2-norm soft-margin SVM classifier. Detailed theoretical analysis is conducted to show how the proposed approach effectively preserves the merits of incorporating the radius of the MEB and how the resulting optimization is efficiently solved. Moreover, the proposed approach achieves the following advantages over its counterparts: 1) more robust in the presence of outliers or noisy training samples; 2) more computationally efficient by avoiding the quadratic optimization for computing the radius at each iteration; and 3) readily solvable by the existing off-the-shelf MKL packages. Comprehensive experiments are conducted on University of California, Irvine, protein subcellular localization, and Caltech-101 data sets, and the results well demonstrate the effectiveness and efficiency of our approach.

Published in:

Cybernetics, IEEE Transactions on  (Volume:43 ,  Issue: 2 )

Date of Publication:

April 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.