By Topic

Generation of Synthetic but Visually Realistic Time Series of Cardiac Images Combining a Biophysical Model and Clinical Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Prakosa, A. ; Asclepios Res. Project, Inria Sophia Antipolis, Sophia Antipolis, France ; Sermesant, M. ; Delingette, H. ; Marchesseau, S.
more authors

We propose a new approach for the generation of synthetic but visually realistic time series of cardiac images based on an electromechanical model of the heart and real clinical 4-D image sequences. This is achieved by combining three steps. The first step is the simulation of a cardiac motion using an electromechanical model of the heart and the segmentation of the end diastolic image of a cardiac sequence. We use biophysical parameters related to the desired condition of the simulated subject. The second step extracts the cardiac motion from the real sequence using nonrigid image registration. Finally, a synthetic time series of cardiac images corresponding to the simulated motion is generated in the third step by combining the motion estimated by image registration and the simulated one. With this approach, image processing algorithms can be evaluated as we know the ground-truth motion underlying the image sequence. Moreover, databases of visually realistic images of controls and patients can be generated for which the underlying cardiac motion and some biophysical parameters are known. Such databases can open new avenues for machine learning approaches.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 1 )