By Topic

Wavelet Bayesian Network Image Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinn Ho ; Inst. of Inf. Sci., Taipei, Taiwan ; Wen-Liang Hwang

From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and estimation task. In this paper, we propose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to model the prior probability of the original image. Then, we use the belief propagation (BP) algorithm, which estimates a coefficient based on all the coefficients of an image, as the maximum-a-posterior (MAP) estimator to derive the denoised wavelet coefficients. We show that if the network is a spanning tree, the standard BP algorithm can perform MAP estimation efficiently. Our experiment results demonstrate that, in terms of the peak-signal-to-noise-ratio and perceptual quality, the proposed approach outperforms state-of-the-art algorithms on several images, particularly in the textured regions, with various amounts of white Gaussian noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 4 )