Cart (Loading....) | Create Account
Close category search window
 

Robust Image Analysis With Sparse Representation on Quantized Visual Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bing-Kun Bao ; Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China ; Guangyu Zhu ; Jialie Shen ; Shuicheng Yan

Recent techniques based on sparse representation (SR) have demonstrated promising performance in high-level visual recognition, exemplified by the highly accurate face recognition under occlusion and other sparse corruptions. Most research in this area has focused on classification algorithms using raw image pixels, and very few have been proposed to utilize the quantized visual features, such as the popular bag-of-words feature abstraction. In such cases, besides the inherent quantization errors, ambiguity associated with visual word assignment and misdetection of feature points, due to factors such as visual occlusions and noises, constitutes the major cause of dense corruptions of the quantized representation. The dense corruptions can jeopardize the decision process by distorting the patterns of the sparse reconstruction coefficients. In this paper, we aim to eliminate the corruptions and achieve robust image analysis with SR. Toward this goal, we introduce two transfer processes (ambiguity transfer and mis-detection transfer) to account for the two major sources of corruption as discussed. By reasonably assuming the rarity of the two kinds of distortion processes, we augment the original SR-based reconstruction objective with mmbl0-norm regularization on the transfer terms to encourage sparsity and, hence, discourage dense distortion/transfer. Computationally, we relax the nonconvex mmbl0-norm optimization into a convex mmbl1-norm optimization problem, and employ the accelerated proximal gradient method to optimize the convergence provable updating procedure. Extensive experiments on four benchmark datasets, Caltech-101, Caltech-256, Corel-5k, and CMU pose, illumination, and expression, manifest the necessity of removing the quantization corruptions and the various advantages of the proposed framework.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.