By Topic

Design of Temporal Basis Functions for Time Domain Integral Equation Methods With Predefined Accuracy and Smoothness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
van 't Wout, E. ; Nat. Aerosp. Lab. NLR, Amsterdam, Netherlands ; van der Heul, D.R. ; van der Ven, H. ; Vuik, C.

A key parameter in the design of integral equation methods for transient electromagnetic scattering is the definition of temporal basis functions. The choice of temporal basis functions has a profound impact on the efficiency and accuracy of the numerical scheme. This paper presents a framework for the design of temporal basis functions with predefined accuracy and varying smoothness properties. The well-known shifted Lagrange basis functions naturally fit in this framework. New spline basis functions will be derived that have the same interpolation accuracy as shifted Lagrange basis functions and with the added advantage of being smooth. Numerical experiments show the positive influence of smoothness on the quadrature error in the numerical integration procedure. The global accuracy in time of the numerical scheme based on shifted Lagrange and spline basis functions has been experimentally analyzed. For a given interpolation error the experiments confirm the expected accuracy for the shifted Lagrange basis functions, but remarkably show a higher order of accuracy for the spline basis functions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 1 )