Cart (Loading....) | Create Account
Close category search window
 

Computational intelligence based anomaly detection for Building Energy Management Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Linda, O. ; Univ. of Idaho, Idaho Falls, ID, USA ; Wijayasekara, D. ; Manic, M. ; Rieger, C.

In the past several decades Building Energy Management Systems (BEMSs) have become vital components of most modern buildings. BEMSs utilize advanced microprocessor technology combined with extensive sensor data collection and communication to minimize energy consumption while maintaining high human comfort levels. When properly tuned and operated, BEMSs can provide significant energy savings. However, the complexity of the acquired sensory data and the overwhelming amount of presented information renders them difficult to adjust or even understand by responsible building managers. This inevitably results in suboptimal BEMS operation and performance. To address this issue, this paper reports on a research effort that utilizes Computational Intelligence techniques to fuse multiple heterogeneous sources of BEMS data and to extract relevant actionable information. This actionable information can then be easily understood and acted upon by responsible building managers. In particular, this paper describes the use of anomaly detection algorithms for improving the understandability of BEMS data and for increasing the state-awareness of building managers. The developed system utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to automatically build a model of normal BEMS operations and detect possible anomalous behavior. In addition, linguistic summaries based on fuzzy set representation of the input values are generated for the detected anomalies which increase the understandability of the presented results.

Published in:

Resilient Control Systems (ISRCS), 2012 5th International Symposium on

Date of Conference:

14-16 Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.