By Topic

An FPGA based processor for Elliptic Curve Cryptography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xi'ning Cui ; School of Computer Science and Technology, Xidian University, Xi'an, China ; Jingwei Yang

As the networks have been broadly used everywhere such as national defense, military, bank and so on, security of data transported on network has become a hot issue. Public key cryptographic algorithms are widely applied in network communication. RSA has been used for a long time as a traditional public key cryptographic system, but it seems not able to meet user's higher security demands. In recent years, ECC(Elliptic Curve Cryptography) has been adopted more and more broadly because of its highest security of the same length bit. In addition, it also has the advantage of less computation overheads, less bandwidth demand and so on. The speed of encryption and decryption of ECC is greatly affected by point multiplication, which is very time-consuming. In this study, an FPGA(Field Programmable Gate Array) based processor is implemented for ECC, which parallelizes the computing of ECC at bit-level and gains a considerable speed-up. The ECC processor is fully implemented with hardware which supports key length of 113-bit, 163-bit and 193-bit. Algorithms suitable for hardware implementation are applied to make the processor more efficient. There are four kinds of unit in the processor: arithmetic logic unit, controlling unit, and input/output system. The units communicate with each other thought bus in FPGA device.

Published in:

Computer Science and Information Processing (CSIP), 2012 International Conference on

Date of Conference:

24-26 Aug. 2012