By Topic

Dynamic Time Over Threshold Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shimazoe, K. ; Dept. of Bioeng., Univ. of Tokyo, Tokyo, Japan ; Takahashi, H. ; Boxuan Shi ; Orita, T.
more authors

The time over threshold (TOT) method has several advantages over direct pulse height analysis based on analog to digital converters (ADCs). A key advantage is the simplicity of the conversion circuit which leads to a high level of integration and a low power consumption. The TOT technique is well suited to build multi-channel readout systems for pixelated detectors as described in our previous work that also exploits the Pulse Width Modulation (PWM) method. The main limitation of the TOT technique is that the relation between the input charge to be measured and the width of the encoded pulse is strongly non-linear. Dynamic range limitation is also an issue. To address these aspects, we propose a new time over threshold conversion circuit where the threshold of the comparator is dynamically changed instead of being constant. We call this scheme the “dynamic TOT method”. We show that it improves linearity and dynamic range. It also shortens the duration of measured pulses leading to higher counting rates. We present a short analysis that explains how the ideal linear input charge to TOT transfer function can theoretically be obtained. We describe the results obtained with a test circuit built from discrete components and present several of the spectrums obtained with crystal detectors and a radioactive source. The proposed method can be used for applications like Positron Emission Tomography (PET) that require moderate energy resolution.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 6 )