By Topic

Resolution Enhancement in PET Reconstruction Using Collimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Metzler, S.D. ; Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA ; Matej, S. ; Karp, J.S.

Collimation can improve both the spatial resolution and sampling properties compared to the same scanner without collimation. Spatial resolution improves because each original crystal can be conceptually split into two (i.e., doubling the number of in-plane crystals) by masking half the crystal with a high-density attenuator (e.g., tungsten); this reduces coincidence efficiency by 4× since both crystals comprising the line of response (LOR) are masked, but yields 4× as many resolution-enhanced (RE) LORs. All the new RE LORs can be measured by scanning with the collimator in different configurations.In this simulation study, the collimator was assumed to be ideal, neither allowing gamma penetration nor truncating the field of view. Comparisons were made in 2D between an uncollimated small-animal system with 2-mm crystals that were assumed to be perfectly absorbing and the same system with collimation that narrowed the effective crystal size to 1 mm. Digital phantoms included a hot-rod and a single-hot-spot, both in a uniform background with activity ratio of 4:1. In addition to the collimated and uncollimated configurations, angular and spatial wobbling acquisitions of the 2-mm case were also simulated. Similarly, configurations with different combinations of the RE LORs were considered including (i) all LORs, (ii) only those parallel to the 2-mm LORs; and (iii) only cross pairs that are not parallel to the 2-mm LORs. Lastly, quantitative studies were conducted for collimated and uncollimated data using contrast recovery coefficient and mean-squared error (MSE) as metrics. The reconstructions show that for most noise levels there is a substantial improvement in image quality (i.e., visual quality, resolution, and a reduction in artifacts) by using collimation even when there are 4 fewer counts or-in some cases-comparing with the noiseless uncollimated reconstruction. By comparing various configurations of sampling, the results show that it is the - atched combination of both improved spatial resolution of each LOR and the increase in the number of LORs that yields improved reconstructions. Further, the quantitative studies show that for low-count scans, the collimated data give better MSE for small lesions and the uncollimated data give better MSE for larger lesions; for highcount studies, the collimated data yield better quantitative values for the entire range of lesion sizes that were evaluated.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 1 )