By Topic

Vertical Stepped Impedance EBG (VSI-EBG) Structure for Wideband Suppression of Simultaneous Switching Noise in Multilayer PCBs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Myunghoi Kim ; Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea ; Kyoungchoul Koo ; Yujeong Shim ; Chulsoon Hwang
more authors

In this paper, we propose a vertical stepped impedance electromagnetic bandgap (VSI-EBG) structure with a stopband enhancement and a size reduction for a wideband suppression of simultaneous switching noise (SSN) coupling in multilayer printed circuit boards (PCBs). The proposed VSI-EBG structure forms the stepped impedance EBG structure of power planes, which is implemented with a vertical branch, high-impedance (hi-Z) and low-impedance (low-Z) metal patches on different layers. Test vehicles are fabricated using a multilayer PCB process to verify the proposed VSI-EBG structure. Through experimental measurements, we verified the enhanced suppression of SSN coupling (below -40 dB) between 650 MHz and 20 GHz. In addition, we demonstrated that fL is reduced from 2.4 GHz to 650 MHz compared to the previous EBG structure, which allows an approximately 86% size reduction.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:55 ,  Issue: 2 )