Cart (Loading....) | Create Account
Close category search window
 

Computations of Electromagnetic Wave Scattering From Penetrable Composite Targets Using a Surface Integral Equation Method With Multiple Traces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Peng ; ElectroScience Lab., Ohio State Univ., Columbus, OH, USA ; Kheng-Hwee Lim ; Jin-Fa Lee

We present a surface integral equation domain decomposition method (SIE-DDM) for time harmonic electromagnetic wave scattering from bounded composite targets. The proposed SIE-DDM starts by partitioning the composite object into homogeneous sub-regions with constant material properties. Each of the sub-regions is comprised of two sub-domains (the interior of the penetrable object, and the exterior free space), separated on the material interface. The interior and the exterior boundary value problems are coupled to each other through the Robin transmission conditions, which are prescribed on the material/domain interface. A generalized combined field integral equation is employed for both the interior and the exterior sub-domains. Convergence studies of the proposed SIE-DDM are included for both single homogeneous objects and composite penetrable objects. Furthermore, a complex large-scale simulation is conducted to demonstrate the capability of the proposed method to model multi-scale electrically large targets.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.