By Topic

A New Physical Optics Based Approach to Subreflector Shaping for Reflector Antenna Distortion Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gonzalez-Valdes, B. ; ECE Dept., Northeastern Univ., Boston, MA, USA ; Martinez-Lorenzo, J.A. ; Rappaport, C. ; Pino, A.G.

Thermal and gravitational effects distort the surface of large reflector antennas and degrade the antenna pattern. When operating with electrically large reflector antennas the surface error limits the high frequency applicability. The behavior of the distorted reflector can be improved by using various techniques to compensate the reflector distortions. This communication presents a new physical optics based approach to synthesize shaped subreflectors to achieve such a compensation. The main contribution of the communication is that the method is not based in computationally intensive calculation nor optimization and thus presents very low calculation times when applied to large antennas. Representative results and comparison with previous approaches to the same problem are presented.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 1 )