By Topic

Characterization of Mass Transfer Rates and Contamination Kinetics on Silicon Wafer Surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Godse, U.B. ; Prospect Flow Solutions, Houston, TX, USA ; Ponkala, M.J.V. ; Stuber, J. ; Elkhatib, B.
more authors

Production yield in semiconductor wafer fabrication is directly affected by low levels of molecular contamination of the silicon wafer surface. Wafers are often carried in specialized plastic enclosures, called front opening unified pods, that are continuously purged with a nitrogen flow to minimize wafer surface contamination. To improve this purge process, it is necessary to better understand the effect of mass transfer transport and kinetic processes on the silicon wafer surfaces. The experimental surface kinetics data available in the literature for diethyl phthalate were utilized, along with a validated computational fluid dynamics model to predict the relative magnitude of the time scales associated with transport and kinetics. The transport time was found to be considerably shorter than the characteristic adsorption time, and the desorption characteristic time was longer than the adsorption time. In general, surface kinetics parameters are not always known. Among other techniques, optimization techniques can be employed to calibrate the kinetic rate parameters. A multi-hierarchical model optimization technique can then be used to infer surface kinetics rates using experimentally measured concentration data for amine contamination of a wafer surface.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 1 )