By Topic

Open-Winding Power Conversion Systems Fed by Half-Controlled Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Wang ; United Technologies Research Center , University of Wisconsin-Madison, East Hartford, CT, USA ; Debiprasad Panda ; Thomas A. Lipo ; Di Pan

An open-winding power conversion system with two conventional six-switch voltage-source converters (VSC) affords operation with a lower volt-ampere (VA) rating of each device for a given power rating, as well as a degree of fault tolerance. The disadvantages of such a configuration include a higher total device VA rating and increased conduction loss as compared to a single Y/Δ-connected VSC. In certain ac-dc applications, such as telecommunications, wind, and aerospace generator drives, it is desired to have regulated input currents and output voltage, but regenerative operation is either not required or prohibited. For such applications, an alternative open-winding power converter is proposed in this paper where half-controlled converter (HCC) is employed at each end of an open-winding structure. The resultant total switch count and total VA rating are reduced by half, compared to using full bridges. Besides, the basic advantages of an open-winding configuration, use of HCCs also guarantees immunity to dc-bus shootthrough and simplifies the gate drive circuit. The total VA rating of the proposed topology is found to be 42% less than a six-switch VSC. The operating principle, control method, and analysis with simulation and experimental results of the proposed topology in both a grid-tied rectifier application and a PM generator application are illustrated in this paper.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 5 )