Cart (Loading....) | Create Account
Close category search window

Multivariate Prediction of Subcutaneous Glucose Concentration in Type 1 Diabetes Patients Based on Support Vector Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Georga, E.I. ; Dept. of Mater. Sci. & Eng., Univ. of Ioannina, Ioannina, Greece ; Protopappas, V.C. ; Ardigo, D. ; Marina, M.
more authors

Data-driven techniques have recently drawn significant interest in the predictive modeling of subcutaneous (s.c.) glucose concentration in type 1 diabetes. In this study, the s.c. glucose prediction is treated as a multivariate regression problem, which is addressed using support vector regression (SVR). The proposed method is based on variables concerning: 1) the s.c. glucose profile; 2) the plasma insulin concentration; 3) the appearance of meal-derived glucose in the systemic circulation; and 4) the energy expenditure during physical activities. Six cases corresponding to different combinations of the aforementioned variables are used to investigate the influence of the input on the daily glucose prediction. The proposed method is evaluated using a dataset of 27 patients in free-living conditions. Tenfold cross validation is applied to each dataset individually to both optimize and test the SVR model. In the case, where all the input variables are considered, the average prediction errors are 5.21, 6.03, 7.14, and 7.62 mg/dl for 15-, 30-, 60-, and 120-min prediction horizons, respectively. The results clearly indicate that the availability of multivariable data and their effective combination can significantly increase the accuracy of both short-term and long-term predictions.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.