Cart (Loading....) | Create Account
Close category search window
 

Cavity Resonator Measurement of Dielectric Materials Accounting for Wall Losses and a Filling Hole

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kilic, E. ; Lehrstuhl fur Umformtechnik und Giessereiwesen, Tech. Univ. Munchen, Garching, Germany ; Siart, U. ; Wiedenmann, O. ; Faz, U.
more authors

A cavity resonator technique for the measurement of isotropic homogeneous nonmagnetic dielectric materials is addressed. The materials to be measured are placed in a well-defined position inside a circular cylindrical cavity resonator through a filling hole in the head end cap of the resonator. The measurement procedure solves the inverse problem based on a variational formulation in terms of the magnetic field in the resonator. The effects of lossy walls and of the filling hole are taken into account by using inhomogeneous surface impedance boundary conditions. In order to reduce the problem to matrix form, the magnetic field in the variational formulation is expanded in terms of undamped eigenmodes of the lossless cavity. The resulting equation is a generalized eigenvalue problem for the unknown material parameters. It is solved by using standard techniques such as the generalized Schur decomposition. The proposed method is tested against experimental data, including measurements at various temperatures, in order to show its capabilities as well as to see the effect of the filling hole on the results.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:62 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.