By Topic

Theoretical Analysis on Reflection Properties of Reflectarray Unit Cells Using Quality Factors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karnati, K.K. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Central Florida (UCF), Orlando, FL, USA ; Yusuf, Y. ; Ebadi, S. ; Xun Gong

In this paper, a novel theoretical approach to extract the reflection coefficient of reflectarray unit cells is developed. The approach is applied to single-resonance unit cell elements under metallic-waveguide incidence. Using this theory, effects of different physical parameters on reflection properties of unit cells can be thoroughly studied without the need of full-wave simulations. It is shown that the reflectarray unit cell falls into three coupling regions depending on its physical dimensions and substrate properties, which lead to either well-behaved or inadequate reflection phase. Detailed analysis is performed for Ka -band reflectarray unit cells and verified by full-wave simulations. Reflectarray unit cells with different substrate thicknesses, patch widths, and dielectric constants are fabricated and measured. The measurement data closely matches both the theory and full-wave simulations. The presented theory provides valuable physical insight and guidelines for optimization of reflectarray unit cells.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 1 )