Cart (Loading....) | Create Account
Close category search window
 

Effect of grain boundary on the electromechanical response of ferroelectric polycrystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shu, Weilin ; Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China ; Wang, Jie ; Zhang, Tong-Yi

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4752269 

The effect of grain boundaries on the electromechanical response of a ferroelectric polycrystal subjected to an electric field or stress is investigated numerically by using a phase field model. The grain boundaries in the phase field model are regarded as dielectrics in which the ferroelectric properties are degraded completely. The phase field simulations show that the presence of dielectric grain boundaries results in a large build-in depolarizing field in grains. The depolarizing field has a significant influence on the coercive field, the switching behaviour of ferroelectric domain under an electric field or stress, and the piezoelectric and dielectric properties of the ferroelectric polycrystal. It is found that both coercive field and remnant polarization decrease with the increase of the thickness of dielectric grain boundary. However, the piezoelectric coefficient and permittivity of the ferroelectric polycrystal become larger when the thickness of dielectric grain boundary increases. The enhancement of dielectric and piezoelectric properties by the dielectric grain boundary suggests a new degree of freedom to tune the electromechanical response of ferroelectric polycrystalline materials.

Published in:

Journal of Applied Physics  (Volume:112 ,  Issue: 6 )

Date of Publication:

Sep 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.