By Topic

High level fault modeling and fault propagation in analog circuits using NLARX automated model generation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Farooq, M.U. ; Electr. & Electron. Eng. Dept., Univ. Teknol. PETRONAS, Tronoh, Malaysia ; Likun Xia ; Hussin, F.A. ; Malik, A.S.

It is known that fault modeling and fault propagation in analog circuits are extremely important and more challenging than in digital circuits. Several automated model generation (AMG) techniques are developed to model the nonlinear behavior of faulty analog circuits. However, most of the modeling techniques are performed under the MATLAB environment which is impractical and the models cannot be utilized in electronic circuits. To perform high level fault modeling (HLFM) and fault propagation (FP) on system level, the models need to be translated into hardware description language (HDL) models such as VHDL-AMS or Verilog-AMS models. In this paper, several faults are modeled for transistor level analog circuits using nonlinear autoregressive exogenous (NLARX) AMG technique in MATLAB. The resulting MATLAB models are translated into VHDL-AMS behavioral models. HLFM and FP are successfully implemented for benchmark analog circuits: inverting amplifier and biquadratic low-pass filter circuits.

Published in:

Intelligent and Advanced Systems (ICIAS), 2012 4th International Conference on  (Volume:2 )

Date of Conference:

12-14 June 2012