By Topic

Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Loh, R.N.K. ; Center for Robot. & Adv. Autom., Oakland Univ., Rochester, MI, USA ; Karsiti, M.N.

The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control laws can be implemented with the unknown states replaced by their observer estimates. The input-output feedback linearization approach and design techniques are employed. Three approximation schemes for smoothing the signum function in the URV model are developed; these smoothing schemes are required for deriving the linearizing feedback control laws and the related results. Simulation results show that the introduction of observer-based nonlinear control would provide a robust method to stabilize and control the depth position of the URV.

Published in:

Intelligent and Advanced Systems (ICIAS), 2012 4th International Conference on  (Volume:2 )

Date of Conference:

12-14 June 2012