By Topic

Object Tracking Algorithm Based on Combination of Dynamic Template Matching and Kalman Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bin Zheng ; Sch. of Autom., Beijing Inst. of Technol., Beijing, China ; Xiangyang Xu ; Yaping Dai ; Yuanyuan Lu

The moving object detection is a prerequisite and difficult point to realize tracking in the video tracking system. In order to detect moving object effectively, an object tracking algorithm is proposed based on combination of dynamic template matching and Kalman filter. First, get the area of the moving object by using inter-frame difference method and extract the SIFT feature points. Then, find the location of the candidate object that is most matched with the object template in the search area by Kalman filter and match it with the object template in the current frame. Finally, the feature points' loss rate will serve as the limited threshold, and we update template according to dynamic template updating strategy. By the number of the frames of the target's matching failures we determine whether the moving target is disappeared. Several experiments of the object tracking show that the approach is accurate and fast, and it has a better robust performance during the attitude changing, the size changing and the shelter instance.

Published in:

Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012 4th International Conference on  (Volume:2 )

Date of Conference:

26-27 Aug. 2012