By Topic

Prediction Model of MHC Class-II Binding Peptide Motifs Using Sequence Weighting Method for Vaccine Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singh, S.P. ; Amity Inst. of Biotechnol., Amity Univ. Uttar Pradesh, Lucknow, India ; Mishra, B.N.

Identification of MHC class-II restricted epitope is an important goal in peptide based vaccine and diagnostic development. Currently, immuno informatics can circumvent conventional time-consuming and laborious experimental techniques of overlapping peptides from protein to epitope identification. However, prediction of MHC class-II epitope is difficult due to variable length of binding peptides (13-25 amino acids). In the present study, we applied the Gibbs motif sampler, Sturniolo pocket profile and NNAlign method for binding motif identification and further position specific scoring matrices (PSSM) using sequence weighting schemes for the prediction of peptide binding to seven human MHC class-II molecules. Here, we used a non-parametric performance measure, area under receiver operating characteristic curve (Aroc) which provides a global assessment of predictive power. The average prediction performances for motif identification based on NNAlign, Sturniolo pocket profile and Gibbs sampler in term of Aroc are 0.71, 0.68 and 0.64, respectively. Further improvements in the performance of MHC class-II binding peptide predictor largely depends on the size of training dataset, optimization of training parameters and the correct identification of the peptide binding motifs.

Published in:

Advances in Computing and Communications (ICACC), 2012 International Conference on

Date of Conference:

9-11 Aug. 2012