By Topic

Classification of Normal and Epileptic EEG Signal Using Time & Frequency Domain Features through Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anusha, K.S. ; Dept. of Electr. Eng., Nat. Inst. of Technol., Calicut, India ; Mathews, M.T. ; Puthankattil, S.D.

Epilepsy is one of the important brain disorders, characterized by sudden recurrent and transient disturbances of mental function and movements of body, which is caused from excessive neuronal activity due to highly frequent electrochemical impulses from the neurons. This excessive discharge is shown in EEG as epileptic spikes which are complementary source of information in diagnosis and localization of epilepsy. Currently there are many techniques for the diagnosis and monitoring of epilepsy. Artificial Neural Networks (ANN) have proved to be an effective approach for a broad spectrum of applications for EEG signals because of its self-adaptation and natural way to organize and implement the redundancy. This paper proposes a neural-network-based automated epileptic EEG detection system that uses Feed forward Artificial Neural Network incorporating sliding window technique for pattern recognition. This work utilizes 100 single channel EEG signals obtained from the database of Epilepsy Centre in Bonn, Germany. The algorithm was trained with 50 datasets and tested for 25 normal data and 25 epileptic data sets. The performance of classification using Feed forward Artificial Neural Network gave a high success rate of 93.37% for distinguishing normal signals and 95.5% for epileptic signals.

Published in:

Advances in Computing and Communications (ICACC), 2012 International Conference on

Date of Conference:

9-11 Aug. 2012