Cart (Loading....) | Create Account
Close category search window

A Predictive Optical Simulation Model for the Rear-Surface Roughness of Passivated Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wöhrle, N. ; Fraunhofer Inst. for Solar Energy Syst., Freiburg, Germany ; Greulich, J. ; Schwab, C. ; Glatthaar, M.
more authors

In this paper, we introduce a predictive, physics-based model, i.e., the so-called tilted-mirror model (tm-model), for optical modeling of rough rear surfaces on silicon solar cells. An enhanced method of using transfer matrices at the rear-side interface of solar cells is developed and combined with Monte Carlo ray tracing. As a result, a physically consistent and precise simulation of the spectral reflectance is achieved, thus leading to a predictive quality of the simulations that could previously not be reached for solar cells with a remaining irregular rear-surface roughness. This advance in optical simulation enables the researcher to directly analyze the effects of varying rear-side passivation materials and thicknesses, as well as the impact of different surface morphologies on the gained charge-carrier generation rate of a solar cell. A comparison with the Phong model shows that the tm-model is able to simulate the generated photocurrent Jph more accurately, as it is shown that the Phong model tends to overestimate this value due to imprecise calculation of charge-carrier generation. In an application of the tm-model to passivated emitter and rear cells, it is shown that a strong planarization of the rear surface leads to an improvement in photogenerated current up to 0.13 mA/cm2 compared with a weak planarization.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.