Cart (Loading....) | Create Account
Close category search window
 

A DC Arc Model for Series Faults in Low Voltage Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Uriarte, F.M. ; Center for Electromech., Univ. of Texas, Austin, TX, USA ; Gattozzi, A.L. ; Herbst, J.D. ; Estes, H.B.
more authors

This paper presents a dc arc model to simplify the study of a critical issue in dc microgrids: series faults. The model is derived from a hyperbolic approximation of observed arc voltage and current patterns, which permit analyzing the arc in terms of its resistance, power, energy, and quenching condition. Recent faults staged by the authors on a dc microgrid yielded enough data to develop an arc model for three fault types: constant-gap speed, fixed-gap distance, and accelerated gap. The results in this paper compare experimental and simulation results for the three fault types. It is concluded that because the instantaneous voltage, current, power, and energy waveforms produced by the model agree well with experimental results, the model is suitable for transient simulations.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 4 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.