By Topic

Capacity of a Diffusion-Based Molecular Communication System With Channel Memory and Molecular Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pierobon, M. ; Broadband Wireless Networking Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Akyildiz, I.F.

Molecular Communication (MC) is a communication paradigm based on the exchange of molecules. The implicit biocompatibility and nanoscale feasibility of MC make it a promising communication technology for nanonetworks. This paper provides a closed-form expression for the information capacity of an MC system based on the free diffusion of molecules, which is of primary importance to understand the performance of the MC paradigm. Unlike previous contributions, the provided capacity expression is independent from any coding scheme and takes into account the two main effects of the diffusion channel: the memory and the molecular noise. For this, the diffusion is decomposed into two processes, namely, the Fick's diffusion and the particle location displacement, which are analyzed as a cascade of two separate systems. The Fick's diffusion captures solely the channel memory, while the particle location displacement isolates the molecular noise. The MC capacity expression is obtained by combining the two systems as function of the diffusion coefficient, the temperature, the transmitter-receiver distance, the bandwidth of the transmitted signal, and the average transmitted power. Numerical results show that a few kilobits per second can be reached within a distance range of tenth of micrometer and for an average transmitted power around 1 pW.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 2 )