By Topic

Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Maoguo Gong ; Key Lab. of Intell. Perception & Image Understanding of Minist. of Educ. of China, Xidian Univ., Xi'an, China ; Yan Liang ; Jiao Shi ; Wenping Ma
more authors

In this paper, we present an improved fuzzy C-means (FCM) algorithm for image segmentation by introducing a tradeoff weighted fuzzy factor and a kernel metric. The tradeoff weighted fuzzy factor depends on the space distance of all neighboring pixels and their gray-level difference simultaneously. By using this factor, the new algorithm can accurately estimate the damping extent of neighboring pixels. In order to further enhance its robustness to noise and outliers, we introduce a kernel distance measure to its objective function. The new algorithm adaptively determines the kernel parameter by using a fast bandwidth selection rule based on the distance variance of all data points in the collection. Furthermore, the tradeoff weighted fuzzy factor and the kernel distance measure are both parameter free. Experimental results on synthetic and real images show that the new algorithm is effective and efficient, and is relatively independent of this type of noise.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 2 )