By Topic

A 1.2-V 5.2-mW 20–30-GHz Wideband Receiver Front-End in 0.18- \mu{\hbox {m}} CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chun-Hsing Li ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chien-Nan Kuo ; Ming-Ching Kuo

This paper presents a low-power wideband receiver front-end design using a resonator coupling technique. Inductively coupled resonators, composed of an on-chip transformer and parasitic capacitances from a low-noise amplifier, a mixer, and the transformer itself, not only provide wideband signal transfer, but also realize wideband high-to-low impedance transformation. The coupled resonators also function as a wideband balun to give single-to-differential conversion. Analytic expressions for the coupled resonators with asymmetric loads are presented for design guidelines. The proposed receiver front-end only needs a few passive components so that gain degradation caused by the passive loss is minimized. Hence, power consumption and chip area can be greatly reduced. The chip is implemented in 0.18-μm CMOS technology. The experimental result shows that the - 3-dB bandwidth can span from 20 to 30 GHz with a peak conversion gain of 18.7 dB. The measured input return loss and third-order intercept point are better than 16.7 dB and -7.6 dBm, respectively, over the bandwidth. The minimum noise figure is 7.1 dB. The power consumption is only 5.2 mW from a 1.2-V supply. The chip area is only 0.18 mm2 .

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 11 )