By Topic

NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Nicola Vitiello ; BioRobotics Institute, Scuola Superiore Sant’Anna, Italy ; Tommaso Lenzi ; Stefano Roccella ; Stefano Marco Maria De Rossi
more authors

This paper presents the design and experimental testing of the robotic elbow exoskeleton NEUROBOTICS Elbow Exoskeleton (NEUROExos). The design of NEUROExos focused on three solutions that enable its use for poststroke physical rehabilitation. First, double-shelled links allow an ergonomic physical human-robot interface and, consequently, a comfortable interaction. Second, a four-degree-of-freedom passive mechanism, embedded in the link, allows the user's elbow and robot axes to be constantly aligned during movement. The robot axis can passively rotate on the frontal and horizontal planes 30° and 40°, respectively, and translate on the horizontal plane 30 mm. Finally, a variable impedance antagonistic actuation system allows NEUROExos to be controlled with two alternative strategies: independent control of the joint position and stiffness, for robot-in-charge rehabilitation mode, and near-zero impedance torque control, for patient-in-charge rehabilitation mode. In robot-in-charge mode, the passive joint stiffness can be changed in the range of 24-56 N·m/rad. In patient-in-charge mode, NEUROExos output impedance ranges from 1 N·m/rad, for 0.3 Hz motion, to 10 N·m/rad, for 3.2 Hz motion.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 1 )