By Topic

Code-Rate Selection, Queueing Behavior, and the Correlated Erasure Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Parag, P. ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Chamberland, J. ; Pfister, H.D. ; Narayanan, K.

This paper considers the relationship between code-rate selection and queueing performance for communication systems subject to time-varying channel conditions. While error-correcting codes offer protection against channel uncertainties, there exists a natural tradeoff between the enhanced protection of low-rate codes and the rate penalty imposed by additional redundancy. In the limiting regime where codewords are asymptotically long, this tradeoff is well understood and characterized by the Shannon capacity. However, for delay-sensitive communication systems and finite block lengths, a complete characterization of this tradeoff is not fully developed. This paper offers a new perspective on the queueing performance of communication systems with finite block lengths operating over correlated erasure channels. A rigorous framework that links code rate to overall system performance for random codes is presented. Guidelines for code-rate selection in delay-sensitive systems are identified. These findings are supported by a numerical study.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 1 )