By Topic

Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Hou ; US Power Inc., Brooklyn Park, MN, USA ; A. Bose

Parallel processing to obtain time domain simulation of power system dynamic behavior has been studied for over a decade. In this paper, a parallel across space implementation of a waveform relaxation (WR) based algorithm is presented. The algorithm can take full advantage of the inherent properties of power systems, such as coherency grouping and localized fault response, thus significantly speeding up the simulations. In the proposed implementation, a system is broken up into several subsystems based on its coherency, and then each processor is devoted to the computation of the waveform of each subsystem. This is the first time the WR algorithm has been implemented on a parallel machine (sequent symmetry S81) and tested on large power systems. The numerical results show very promising performance compared with the commonly used very dishonest Newton algorithm, with overall speedups of up to 27 obtained for a 2500-bus system using 20 processors

Published in:

IEEE Transactions on Power Systems  (Volume:12 ,  Issue: 3 )