By Topic

Tipping points in science: A catastrophe model of scientific change

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. H. Kwakkel ; Delft University of Technology, Faculty of Technology, Policy and Management, The Netherlands ; S. W. Cunningham

In this paper we discuss the capabilities for scientific knowledge to demonstrate explosive growth in short periods of time. In one notable example the field of engineering and technology management grew more rapidly in the four years after 1980 than it was expected to grow for the next forty. We provide twenty two examples drawn widely from science, demonstrating that this phenomena is pervasive throughout science. We propose a new model, based on the idea of folds from mathematical catastrophe theory, a phenomenon that is more popularly known as tipping points. This model is then fit using non-linear regression in the presence of Poisson noise. While the tipping point does not occur in all fields of science, in those cases where it does occur the resultant model overwhelmingly supports the idea of catastrophic growth within scientific knowledge. We describe the differential equations underlying the fold catastrophe and relate these equations to a process of communication and interaction. We relate this dynamic to other word of mouth models such as the Bass diffusion model. We further discuss why scientific, and to a lesser extent news, articles are subject to this behavior while the same phenomenon is unlikely to occur when solely measuring the sales of a physical product. We provide evidence of the phenomenon in one brief sociological sketch of scientific activity. Finally, we discuss the relevance of the model in terms of innovation forecasting. In particular, we evaluate the possibility for ex ante anticipation of the bifurcation point.

Published in:

2012 Proceedings of PICMET '12: Technology Management for Emerging Technologies

Date of Conference:

July 29 2012-Aug. 2 2012