By Topic

Parallel Transient Simulation of Multiphysics Circuits Using Delay-Based Partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Priyadarshi, S. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Saunders, C.S. ; Kriplani, N.M. ; Demircioglu, H.
more authors

A parallel transient simulation technique for multiphysics circuits is presented. The technique develops partitions utilizing the inherent delay present within a circuit and between physical domains. A state-variable-based circuit delay element is presented, which implements the coupling between two spatially or temporally isolated circuit partitions. A parallel delay-based iterative approach for interfacing delay-partitioned subcircuits is applied, which achieves the reasonable accuracy of nonparallel circuit simulation if both incorporate the same interblock delay. The partitioned subcircuits are distributed to different cores of a shared-memory multicore processor and solved in parallel. A multithreaded implementation of the methodology using OpenMP is presented. Examples showing superlinear speedup compared to unpartitioned single-core simulation using the direct method are presented. This paper also discusses the impact of load balancing and absolute delay on simulation speedup.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 10 )