By Topic

Extracting Gene-Gene Interactions Through Curve Fitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Das, R. ; Indian Stat. Inst., Kolkata, India ; Mitra, S. ; Murthy, C.A.

This paper presents a simple and novel curve fitting approach for generating simple gene regulatory subnetworks from time series gene expression data. Microarray experiments simultaneously generate massive data sets and help immensely in the large-scale study of gene expression patterns. Initial biclustering reduces the search space in the high-dimensional microarray data. The least-squares error between fitting of gene pairs is minimized to extract a set of gene-gene interactions, involving transcriptional regulation of genes. The higher error values are eliminated to retain only the strong interacting gene pairs in the resultant gene regulatory subnetwork. Next the algorithm is extended to a generalized framework to enhance its capability. The methodology takes care of the higher-order dependencies involving multiple genes co-regulating a single gene, while eliminating the need for user-defined parameters. It has been applied to the time-series Yeast data, and the experimental results biologically validated using standard databases and literature.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:11 ,  Issue: 4 )