By Topic

The Multiway Relay Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deniz Gunduz ; Parc Mediterrani de la Tecnologia, Centre Tecnológic de Telecomunicacions de Catalunya, Castelldefels Barcelona, Spain ; Aylin Yener ; Andrea Goldsmith ; H. Vincent Poor

The multiuser communication channel, in which multiple users exchange information with the help of a relay terminal, termed the multiway relay channel (mRC), is introduced. In this model, multiple interfering clusters of users communicate simultaneously, such that the users within the same cluster wish to exchange messages among themselves, i.e., each user multicasts its message to all the other users in its own cluster. It is assumed that the users cannot receive each other's signals directly. Hence, the relay terminal in this model is the enabler of communication. In particular, restricted encoders are considered, such that the encoding function of each user depends only on its own message and the received signal is used only for decoding the messages of the other users in the cluster. Achievable rate regions and an outer bound are characterized for the Gaussian mRC, and their comparison is presented in terms of the exchange rate, the symmetric rate point in the capacity region in a symmetric Gaussian mRC scenario. It is shown that the compress-and-forward (CF) protocol achieves exchange rates within a constant bit offset of the optimal exchange rate, independent of the power constraints of the terminals in the network. A finite bit gap between the exchange rates achieved by the CF and the amplify-and-forward protocols is also shown. The two special cases of the mRC, the full data exchange model, in which every user wants to receive messages of all other users, and the pairwise data exchange model which consists of multiple two-way relay channels, are investigated in detail. In particular for the pairwise data exchange model, in addition to the proposed random coding-based achievable schemes, a nested lattice coding-based scheme is also presented and is shown to achieve exchange rates within a constant bit gap of the exchange capacity.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 1 )