By Topic

Design and Characterization of a High Dynamic Range and Ultra Low Power 16-Channel ASIC for an Innovative 3D Imaging Space Plasma Analyzer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rhouni, A. ; L2E Lab. of Electron. & Electromagn., UPMC Univ. Paris 06, Paris, France ; Techer, J.-D. ; Sou, G. ; Berthomier, M.

A very low power 16-channel ASIC has been designed and fabricated in a standard 0.35 μm CMOS technology. It is to be used as the front-end electronics of the micro-channel plates (MCPs) based detector of a 3D space plasma analyzer. Each channel includes a charge sensitive amplifier (CSA) and a discriminator. With a CSA conversion gain of 0.5 mV/fC, the ASIC is able to detect charges emitted by the MCPs over a wide dynamic range of 10 fC to 3.5 pC. The CSA pulse-pair-resolution (PPR) is 170 ns, and the maximum counting rate frequency is 7.5 MHz for input charges limited to 100 fC and 4.6 MHz for full scale inputs. The CSA input devices are optimized for a detector capacitance varying in the range of 2-12 pF. The measured input equivalent noise charge (ENCin) is 1.3 fC + 0.1 fC/pF rms. These features have been obtained with an unprecedented low power consumption of only 0.64 mW per channel. Experimental tests under the extended temperature range of -40°C to 85°C have shown no significant performance variations.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 5 )