By Topic

A Self-Checking Approach for SEU/MBUs-Hardened FSMs Design Based on the Replication of One-Hot Code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li Yuanqing ; Sch. of Electron. Inf. Eng., Tianjin Univ., Tianjin, China ; Yao Suying ; Xu Jiangtao ; Gao Jing

As technology scales, the protection of Finite State Machines' (FSMs) states against single event upset (SEU) and multiple bit upsets (MBUs) becomes more difficult. In this paper, a self-checking approach to enhance the SEU/MBUs immunity of FSMs' states by replicating One-Hot code times for state encoding is presented. This approach can correct less than bit-flip faults in the state register per cycle. Bit-flips are treated as random events and modeled by applying Poisson distribution. Two characteristics of this approach are obtained through probability analysis: first, this approach performs better with the increase of , whereas worse when an FSM contains more states; second, this approach can offer more enhanced reliability than Binary or One-Hot state encoding with Triple Modular Redundancy (TMR). The former characteristic leads to the further improvement of this approach which is called state-reforming. The reliabilities of this proposed approach and its state-reformed solutions, as well as are all evaluated through simulations of fault injections.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 5 )