By Topic

Stochastic Gradient Pursuit for Adaptive Equalization of Sparse Multipath Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vlachos, E. ; Dept. of Comput. Eng. & Inf., Univ. of Patras, Patras, Greece ; Lalos, A.S. ; Berberidis, K.

In this paper, a new heuristic algorithm for the sparse adaptive equalization problem, termed as stochastic gradient pursuit, is proposed. A decision-feedback equalization structure is used in order to effectively mitigate the effect of long multipath channels. Diverging from the commonly used approach of sparse channel identification, we exploit the sparsity of the inverse problem under the compressive sensing perspective. Also, an extension to the case where the sparsity order parameter is unknown, is developed. Simulation results verify that the proposed schemes exhibit faster convergence and improved tracking capabilities compared to conventional and other sparse aware equalization schemes, offering at the same time a reduced computational complexity.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 3 )