By Topic

Performance of Omega-Shaped-Gate Silicon Nanowire MOSFET With Diameter Down to 8 nm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
S. Barraud ; Commissariat à l'Energie Atomique et aux Energies Alternatives, LETI, Grenoble , France ; R. Coquand ; M. Casse ; M. Koyama
more authors

In this letter, the electrostatic and the performance of cylindrical silicon nanowire (NW) MOSFETs with an omega-shaped gate and diameters down to 8 nm are investigated. The impact of silicon nitride (SiN) spacer thickness (7, 10, or 15 nm) on short-channel performance is examined. The tradeoff between superior electrostatic confinement and electrical performance, which will be an essential consideration for the design of future NW devices, is clearly observed. Finally, a comparison with trigate NWs shows an improved electrostatic control for a cylindrical-shaped gate, as theoretically expected.

Published in:

IEEE Electron Device Letters  (Volume:33 ,  Issue: 11 )