Cart (Loading....) | Create Account
Close category search window
 

Rear-Surface Passivation Technology for Crystalline Silicon Solar Cells: A Versatile Process for Mass Production

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Gassenbauer, Y. ; SCHOTT Solar AG, Alzenau, Germany ; Ramspeck, K. ; Bethmann, B. ; Dressler, K.
more authors

Over the past few years, significant progress has been made in integrating cell structure improvements on the cell front side into mass production, such as, e.g., selective emitters. With these improvements, the large-area aluminum back-surface field clearly limits the efficiency of typical industrial cells. Dielectric passivation of the cell rear side provides a means for significant improvement. However, it needs to be adapted to different wafer materials and cell structures in order to obtain economic efficiency, allowing for its implementation in mass production. In this paper, we report on our cost-effective passivated emitter and rear cell (PERC) technology that easily adapts to various wafer materials, such as multicrystalline, quasi-monocrystalline, and Czochralski-grown monocrystalline material. It is suitable for wafer thicknesses down to 120 μm and all base resistivities in the range from 1 to 3.5 Ω·cm. Additionally, we investigate the compatibility with homogeneous and selective emitters on the cell front side. For commercially available Czochralski wafers, we present an efficiency gain of more than 1.0% absolute in cell efficiency with a peak cell efficiency of up to 20.2%. The usability of our PERC solar cells in modules is demonstrated with a 289-W module containing 60 PERC cells. To emphasize the efficacy of high-performance cells in modules, a simple cell-to-module factor calculation is presented.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.