By Topic

Evaluating feature selection for stress identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Deng ; School of Electronic Engineering and Computer Science, Peking University, Beijing, China, 100871 ; Zhonghai Wu ; Chao-Hsien Chu ; Tao Yang

In modern society, more and more people are suffering from stress. The accumulation of stress will result in poor health condition to people. Effectively detecting the stress of human being in time provides a helpful way for people to better manage their stress. Much work has been done on recognizing the stress level of people by extracting features from the bio-signals acquired by physiological sensors. However, little work has been focused on the feature selection. In this paper, we propose a feature selection method based on Principal Component Analysis (PCA). After the features are selected, their effectiveness in terms of correct rate and computational time are evaluated using five classification algorithms, Linear Discriminant Function, C4.5 induction tree, Support Vector Machine (SVM), Naïve Bayes and K Nearest Neighbor (KNN). We use the driver stress database contributed by MIT Media lab for our experiments. Leaving one out as well as 10-fold data preparation approach is implemented as the cross validation method for our evaluation. Paired t-test is then performed to analyze and compare the experimental results, as well as for their statistical significance. Our study demonstrates the importance of feature selection and the effectiveness of the methods used in accurately classifying stress levels.

Published in:

Information Reuse and Integration (IRI), 2012 IEEE 13th International Conference on

Date of Conference:

8-10 Aug. 2012