By Topic

Adaptive maximum likelihood algorithms for the tracking of time-varying multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Transmissions through multipath channels suffer from Rayleigh fading and intersymbol interference. This can be overcome by sending a (known) training sequence and identifying the channel (active identification). However, in a nonstationary context, the channel model has to be updated by periodically sending the training sequence, thus reducing the transmission rate. We address the problem of blind identification, which does not require such a sequence and allows a higher transmission rate. In order to track nonstationary channels, we have derived an adaptive (Kalman) algorithm which directly estimates the entire set of characteristic parameters. An original adaptive estimation of the noise model has been proposed for this investigation. Monte-Carlo simulations confirm the expected results and demonstrate the performance.

Published in:

Signal Processing Advances in Wireless Communications, First IEEE Signal Processing Workshop on

Date of Conference:

16-18 April 1997