By Topic

Theoretical Analysis and Practical Considerations for the Integrated Time-Stretching System Using Dispersive Delay Line (DDL)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we perform the theoretical analysis and experimental demonstration of an on-chip implementation of a Ku-band nanosecond scale time-stretching (TS) system in a 130-nm IBM 8RF CMOS process. The theory of the TS system is applicable to general TS systems. In this study, we explain the impact of the time-bandwidth product (TBP) on practical design considerations and derive the error and distortion of a general TS system based on a dispersive delay line with perfect linear group delay and all pass amplitude characteristic. We also derive the time resolution of a general TS system using both the principle of uncertainty as well as the short time Fourier transform method. This fundamental result enables a designer to understand the qualitative relationship between the TBP and the best possible resolution of the TS system. Finally, we experimentally demonstrate the TS system on chip with nanosecond group-delay variance and 12-16-GHz bandwidth. This demonstration indicates the potential for implementation of more complicated time-scaling signal-processing systems on chip, as well as a quantification of the error and distortion for such systems.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 11 )