By Topic

A 10-b Ternary SAR ADC With Quantization Time Information Utilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jon Guerber ; Oregon State University, Corvallis, OR, USA ; Hariprasath Venkatram ; Manideep Gande ; Allen Waters
more authors

The design of a ternary successive approximation (TSAR) analog-to-digital converter (ADC) with quantization time information utilization is proposed. The TSAR examines the transient information of a typical dynamic SAR voltage comparator to provide accuracy, speed, and power benefits. Full half-bit redundancy is shown, allowing for residue shaping which provides an additional 6 dB of signal-to-quantization-noise ratio (SQNR). Synchronous quantizer speed enhancements allow for a shorter worst case conversion time. An increased monotonicity switching algorithm, stage skipping due to reference grouping, and SAR logic modifications minimize overall dynamic energy. The architecture has been shown to reduce capacitor array switching power consumption and digital-to-analog converter (DAC) driver power by about 60% in a mismatch limited SAR, reduce comparator activity by about 20%, and require only 8.03 average comparisons and 6.53 average DAC movements for a 10-b ADC output word. A prototype is fabricated in 0.13-μm CMOS employing on-chip statistical time reference calibration, supply variability from 0.8 to 1.2 V, and small input signal power scaling. The chip consumes 84 μ W at 8 MHz with an effective number of bits of 9.3 for a figure of merit of 16.9 fJ/C-S for the 10-b prototype and 10.0 fJ/C-S for a 12-b enhanced prototype chip.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 11 )