Cart (Loading....) | Create Account
Close category search window
 

An Integrated 802.11p WAVE DSRC and Vehicle Traffic Simulator With Experimentally Validated Urban (LOS and NLOS) Propagation Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Biddlestone, S. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Redmill, K. ; Miucic, R. ; Ozguner, U.

The IEEE 802.11p, 1609.3, and 1609.4 WAVE standards are designed to facilitate intervehicle communication and ultimately improve traffic safety. Multiple safety applications and control algorithms have been proposed to use 802.11p Dedicated Short-Range Communication (DSRC) radios and message structures. An urban environment provides many challenges for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. These include multiple propagation paths and many occlusions, particularly in areas where V2V messages would be most useful such as blind spots, buildings, and other obstructions. The dense urban environments and high concentration of vehicles make it difficult to predict how reliable this communication will be. The Ohio State University's Vehicle and Traffic Simulator (VaTSim) is designed as a microsimulator of traffic. This paper describes the incorporation of V2V communication into VaTSim using Network Simulator 3 (NS3) and physical layer modeling to determine how different road layouts and building configurations will affect 802.11p communication. This paper explains the theory used to define the simulated line-of-sight (LOS) propagation, non-LOS (NLOS) propagation calculations, channel switching congestion, and the experiments performed to validate the models and the simulation.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.