By Topic

Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kanojiya, R.G. ; Dept. of Electr. Eng., Chavan Coll. of Eng., Nagpur, India ; Meshram, P.M.

This paper present a method to determine the optimal tuning of the PI controller parameter on Direct current (DC) motor drive system using particle swarm optimization (PSO) algorithm, Ziegler-Nichols (ZN) tuning and Modified Ziegler-Nichols (MZN) tuning method. The main objective of this paper is to minimize transient response specifications chosen as rise time, settling time and overshoot, for better speed response of DC motor drive. The speed control of DC motor is done using PI and PID controllers. Implementation of PID controller for DC motor speed control is done using ZN and MZN tuning method. For PSO algorithm technique, PI controller is used to improve the performance of DC motor speed control system. A comparison is made on the basis of objective function (rise time, settling time and overshoot) from output Step responses. The proposed approach had superior features, including easy implementation, stable convergence characteristic, and good computational efficiency. Fast tuning of optimum PI controller parameters yields high-quality solution. Compared with traditional ZN method and MZN method, the proposed method is found indeed more efficient and robust in improving the step response of DC motor drive system.

Published in:

Advances in Power Conversion and Energy Technologies (APCET), 2012 International Conference on

Date of Conference:

2-4 Aug. 2012