Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Statistical Machine Learning and Dissolved Gas Analysis: A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mirowski, P. ; Stat. & Learning Res. Dept., Alcatel-Lucent Bell Labs., Murray Hill, NJ, USA ; LeCun, Y.

Dissolved gas analysis (DGA) of the insulation oil of power transformers is an investigative tool to monitor their health and to detect impending failures by recognizing anomalous patterns of DGA concentrations. We handle the failure prediction problem as a simple data-mining task on DGA samples, optionally exploiting the transformer's age, nominal power and voltage, and consider two approaches: 1) binary classification and 2) regression of the time to failure. We propose a simple logarithmic transform to preprocess DGA data in order to deal with long-tail distributions of concentrations. We have reviewed and evaluated 15 standard statistical machine-learning algorithms on that task, and reported quantitative results on a small but published set of power transformers and on proprietary data from thousands of network transformers of a utility company. Our results confirm that nonlinear decision functions, such as neural networks, support vector machines with Gaussian kernels, or local linear regression can theoretically provide slightly better performance than linear classifiers or regressors. Software and part of the data are available at http://www.mirowski.info/pub/dga.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 4 )