By Topic

Scenario-Based Multiobjective Volt/Var Control in Distribution Networks Including Renewable Energy Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taher Niknam ; Department of Electronics and Electrical Engineering, Shiraz University of Technology (SUTech), Shiraz, Iran ; Mohsen Zare ; Jamshid Aghaei

This paper proposes a stochastic multiobjective framework for daily volt/var control (VVC), including hydroturbine, fuel cell, wind turbine, and photovoltaic powerplants. The multiple objectives of the VVC problem to be minimized are the electrical energy losses, voltage deviations, total electrical energy costs, and total emissions of renewable energy sources and grid. For this purpose, the uncertainty related to hourly load, wind power, and solar irradiance forecasts are modeled in a scenario-based stochastic framework. A roulette wheel mechanism based on the probability distribution functions of these random variables is considered to generate the scenarios. Consequently, the stochastic multiobjective VVC (SMVVC) problem is converted to a series of equivalent deterministic scenarios. Furthermore, an Evolutionary Algorithm using the Modified Teaching-Learning-Algorithm (MTLA) is proposed to solve the SMVVC in the form of a mixed-integer nonlinear programming problem. In the proposed algorithm, a new mutation method is taken into account in order to enhance the global searching ability and mitigate the premature convergence to local minima. Finally, two distribution test feeders are considered as case studies to demonstrate the effectiveness of the proposed SMVVC.

Published in:

IEEE Transactions on Power Delivery  (Volume:27 ,  Issue: 4 )