By Topic

Modeling and Simulation of Temporal Variation of Channel and Noise in Indoor Power-Line Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chariag, D. ; Univ. of Tours, Tours, France ; Guezgouz, D. ; Le Bunetel, J.-C. ; Raingeaud, Y.

Broadband power-line communication (PLC) technologies are one of the main parameters of digital convergence voice-data-video in the home environment. These technologies use the power-line network as a propagation and a communication medium. Its transmission quality depends on the frequency behavior of the propagation medium and the connected household electrical appliances. The impedance of those devices and noise levels has a great impact on the PLC systems. In this paper, a simulator for indoor power-line channels is presented. In this paper, a new approach is presented for modeling temporal variations of noise and channel on indoor power lines. A three-conductor power cable (phase, neutral, and ground) is modeled by a circuit of four elements (resistor R, inductor L, capacitance C, conductance G). The RLCG parameters are deduced from the impedance measurement in open circuit and in short circuit. The cable model is validated in time and frequency domains. Then, the temporal variation of periodic noise is modeled by a stochastic approach. The global model, combining both channel and noise variations, is validated by comparing SPICE simulation and measurement results.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 4 )